Label-Free 3D Ag Nanoflower-Based Electrochemical Immunosensor for the Detection of Escherichia coli O157:H7 Pathogens

نویسندگان

  • He Huang
  • Minghuan Liu
  • Xiangsheng Wang
  • Wenjie Zhang
  • Da-Peng Yang
  • Lianhua Cui
  • Xiansong Wang
چکیده

It is highly desirable to develop a rapid and simple method to detect pathogens. Combining nanomaterials with electrochemical techniques is an efficient way for pathogen detection. Herein, a novel 3D Ag nanoflower was prepared via a biomineralization method by using bovine serum albumin (BSA) as a template. It was adopted as a sensing interface to construct an electrochemical bacteria immunosensor for the rapid detection of foodborne pathogens Escherichia coli (E. coli) O157:H7. Bacterial antibody was immobilized onto the surface of Ag nanoflowers through covalent conjugation. Electrochemical impedance spectroscopy (EIS) was used to detect and validate the resistance changes, where [Fe(CN)6]3-/4- acted as the redox probe. A linear relation between R et and E. coli concentration was obtained in the E. coli concentration range of 3.0 × 102-3.0 × 108 cfu mL-1. The as-prepared biosensor gave rise to an obvious response to E. coli but had no distinct response to Cronobacter sakazakii, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus albus, Lactobacillus easei, and Shigella flexneri, revealing a high selectivity for the detection of the pathogens down to 100 cfu mL-1 in a short time. We believe that this BSA-conjugated 3D Ag nanoflowers could be used as a powerful interface material with good conductivity and biocompatibility for improving pathogen detection and treatment in the field of medicine, environment, and food safety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria.

Here we describe the fabrication of a highly sensitive and label-free ITO-based impedimetric immunosensor for the detection of pathogenic bacteria Escherichia coli O157:H7. Anti-E. coli antibodies were immobilized onto ITO electrodes using a simple, robust and direct methodology. First, the covalent attachment of epoxysilane on the ITO surface was demonstrated by Atomic Force Microscopy and cyc...

متن کامل

Electrochemical Immunoassay of Escherichia coli O157:H7 Using Ag@SiO2 Nanoparticles as Labels

Silica coated silver (Ag@SiO2) nanoparticles were prepared and characterized by transmission electron microscope (TEM) and UV-vis absorption, and the nanoparticles were used as labels in sandwich-type immunosensor of Escherichia coli O157:H7 (E. coli O157:H7). The labels involved in immunoreaction were dissolved by mixed acid of hydrofluoric acid and nitric acid, and the released Ag(+) ions wer...

متن کامل

Fabrication of SrTiO3 Layer on Pt Electrode for Label-Free Capacitive Biosensors

Due to their interesting ferroelectric, conductive and dielectric properties, in recent years, perovskite-structured materials have begun to attract increasing interest in the biosensing field. In this study, a strontium titanate perovskite layer (SrTiO₃) has been synthesized on a platinum electrode and exploited for the development of an impedimetric label-free immunosensor for Escherichia col...

متن کامل

A Label-Free Impedance Immunosensor Using Screen-Printed Interdigitated Electrodes and Magnetic Nanobeads for the Detection of E. coli O157:H7

Escherichia coli O157:H7 is one of the leading bacterial pathogens causing foodborne illness. In this study, an impedance immunosensor based on the use of magnetic nanobeads and screen-printed interdigitated electrodes was developed for the rapid detection of E. coli O157:H7. Magnetic nanobeads coated with anti-E. coli antibody were mixed with an E. coli sample and used to isolate and concentra...

متن کامل

Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin

Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016